DEVELOPING INDEPENDENT TECH, SERVING HYDROGEN SOCIETY

Corporate Website

MaCam

Ningbo Zhongke Cotrun New Energy Science Technology Co., Ltd.

AD 3F, No.20, Kandun West Street, CiXi, ZheJiang 315303, China

E zkkcenergy@cas-nano.cn

www.cas-nano.cn

т 0086-574-63081905

10 - year industry experience

3500 m² intelligent production base

across the country

YHKC

Ningbo Zhongke Cotrun New Energy Science Technology Co., Ltd.

Ningbo Zhongke Cotrun New Energy Science Technology Co., Ltd. is a national high-tech enterprise and a specialized-sophisticated enterprise in Ningbo, with the core technology and team originated from Shanghai Advanced Research Institute, Chinese Academy of Sciences. The company specializes in the research and development of nanostructured electrocatalysts, membrane electrode assemblies (MEAs) for PEM fuel cells and water electrolyzers, focusing on the industrialization, application, and the solution for the customers. The company has over 20 invention patents, and participated in numerous national-level research programs.

The company has meticulously developed supported and unsupported electrocatalysts, MEAs for PEM fuel cell & water electrolysis, and electrolyzer products. These products demonstrate outstanding performance and have been widely utilized in various fields including fuel cells, PEM electrolysis, gas sensors, metal-air batteries, biotechnology and pharmaceutical chemistry. The key technical parameters have reached the international advanced levels. The company has won the First Prize of Technology Invention from the Chinese Renewable Energy Society, the China International Industry Fair New Innovation Award, and other honors.

"Developing Independent Tech., Servicing Hydrogen Energy Society" is the company's consistent business philosophy. Against the backdrop of the "dual -carbon" strategy, the company aims to break through the bottlenecks for key materials and realizes the large-scale application of the core components in hydrogen energy industry chain. The company will continue to carry forward the pioneering spirit, and is committed to providing our customers with "professional, high-quality, reliable, and cost-effective" one-stop application solutions with profound professional knowledge and rich practical experience, contributing to the development of the industry.

CORPORATEHONORS

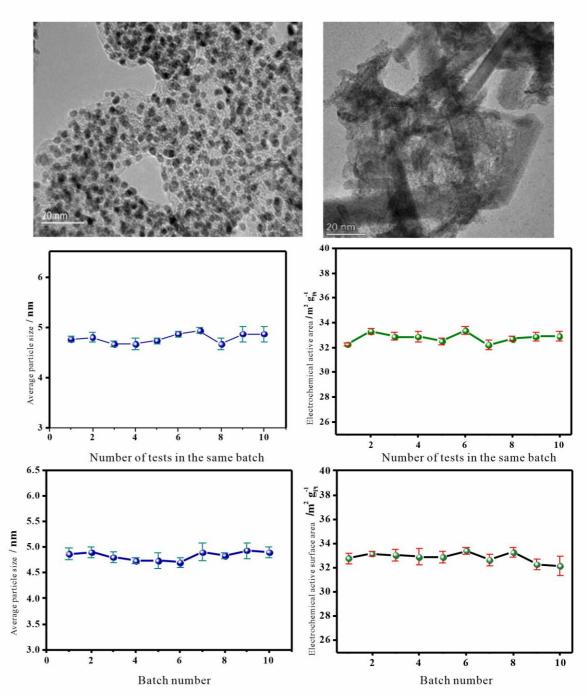
- High-tech certified enterprise; Specialized and sophisticated new enterprise
- ISO-9001 quality management system certification
- IATF: 16949 automotive quality management system certification
- The product won the Innovation Award at the China International Industry Fair
- China Hydrogen Energy Industry New Development Special Contribution Award

First Prize in S&T Award of China Renewable Energy Society

INVENTION PATENT

Over 20 invention patents with independent intellectual property rights

Technical Features and Advancement


Break through the key challenges for the composition and structure consistencies for kg-scale batch production. The metal loadings and particle sizes can be precisely controlled.

Catalysts	Specifications	Compositions	Average Particle Size (nm)	Electrochemical Active Area (ECSA, m²/g)	Mass Activity (MA, mA/mg)	Specific Surface Area (m²/g)
	HiCaP40	40wt.%Pt, 60wt.%C	2.8	95	130	140
	HiCaP50	50wt.%Pt, 50wt.%C	3.3	85	130	110
Pt/C	HiCaP60	60wt.%Pt, 40wt.%C	3.3	90	135	296
	HiCaP70	70wt.%Pt, 30wt.%C	3.3	55	134	85
PtCo	HiCaPC55	51wt.%Pt,3wt.%Co,45wt.%Ct	5.2	65	350	110
Pt Black	HiCaP100	>95 wt.%Pt	5.0	≥32	80	35
Ir-Black	HiCal100	>95 wt.%lr	4.5	120	180	52
lrO2	HiCalO100	~80 wt.%lr	7.0	30	240	120
Low-Ir Catalyst	HiCalO70	~56 wt.%lr	4.5	60	180	75
1.70	HiCal20	20wt.%lr,80wt.%C	2.5	180	600	500
Ir/C	HiCal85	85wt.%lr,15wt.%C	4.5	85	190	145
PtRu Black	HiCaPR100	65wt.%Pt, 35wt.%Ru	3.2	30	190	40
PtRu/C	HiCaPR60	40wt.%Pt,20wt.%Ru,40wt.%C	4.0	85	1	100
Ru-Black	HiCaR100	>95wt.%Ru	7.0	40	200	80

Break through the key technologies for consistent of composition and structure in kilogram-scale batch production.

Excellent Uniformity & Consistency

The nanostructured electrocatalysts present the features with high activity and durability to ensure the high quality of bulk-supplied products, meeting the customers' expectations and laying a solid foundation for product quality and mass production.

[■] The loading amount and particle size can be precisely controlled.

Platinum Supported on Carbon

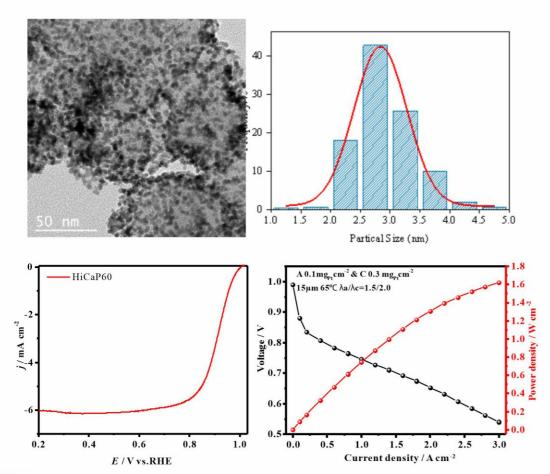
Technical Features and Advancement

Kilogram-scale preparation for each batch.

Platinum loading supported on carbon is adjustable ranging from 1~70%.

Platinum nanoparticles feature with high uniformity with the standard difference of ± 0.2 nm.

The unique lattice compressive stress enhances the activity and stability.


Application Scenarios

PEM fuel cells

PEM water electrolyer

Platinum-Carbon Catalyst

		Initial	30Kcycles
	ECSA/m² mg _{Pt} 1	95	72
HiCaP40	MA/ mAmg _{Pt} -1	130	108
	Voltage / 0.8 A cm ⁻²	0. 712	0. 687
	ECSA/m² mg _{Pt} -1	90	63
HiCaP50	MA/ mAmg _{Pt} -1	130	109
	Voltage /0.8 A cm ⁻²	0. 744	0. 719
	ECSA/m ² mg _{Pt} ⁻¹	85	64
HiCaP60	MA/ mAmg _{Pt} ⁻¹	135	106
	Voltage / 0.8 A cm ⁻²	0. 765	0. 744
	ECSA/m ² mg _{Pt} ⁻¹	55	42
HiCaP70	MA/ mAmg _{Pt} -1	134	114
	Voltage /0.8 A cm ⁻²	0. 762	0. 741

Referring to US DOE square-wave test standard

Platinum-Black Catalyst

Technical Features and Advancement

Kilogram-scale preparation for each batch Particle size is uniform and adjustable from 4~10 nm. Increased bulk density. High ink dispersibility.

Current density / A cm

Application Scenarios H2-O2 fuel cells

Cathode for PEM hydrogen generators

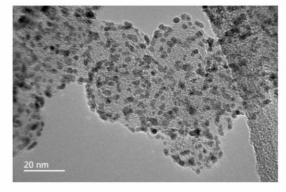
Electrochemical sensors

Platinum-Black Catalyst

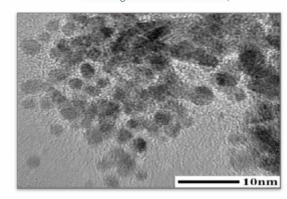
HiCaP100 HiCaP100 HiCaP100 HiCaP100 HiCaP100 HiCaP100 A0.4 mg , cm² & C 1 m

Platinum-Ruthenium Catalyst

PtRu Alloy Supported on Carbon

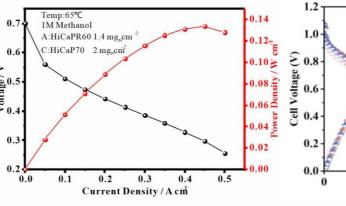

Technical Features and Advancement

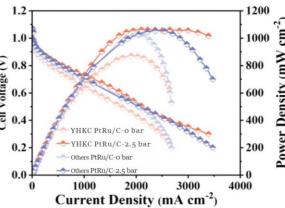
Kilogram-scale preparation for each batch High alloying degree, close to the theoretical value.


Uniform size of PtRu nanoparticles, with the standard difference of ±0.3 nm.

Application Scenarios

DMFC (Direct Methanol Fuel Cell)
Anodic CO-tolerant catalyst for PEMFC (Proton Exchange Membrane Fuel Cell)
Cathode catalyst for AEMWE (Alkaline Anion Exchange Membrane Water Electrolyzer)
Anode catalyst for AEMFC (Alkaline Anion




HiCaPR60

Exchange Membrane Fuel Cell)

HiCaPR100

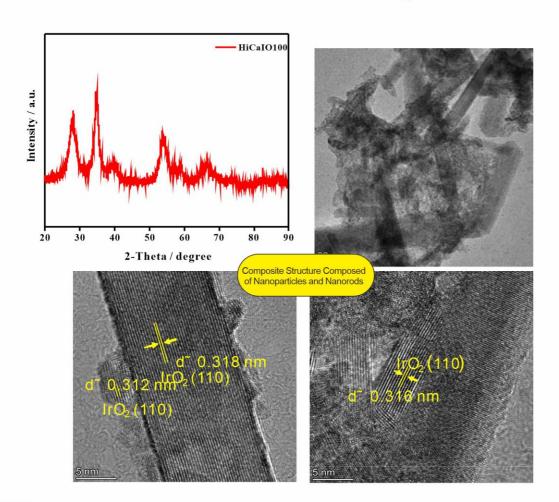
Unsupported Iridium Oxide

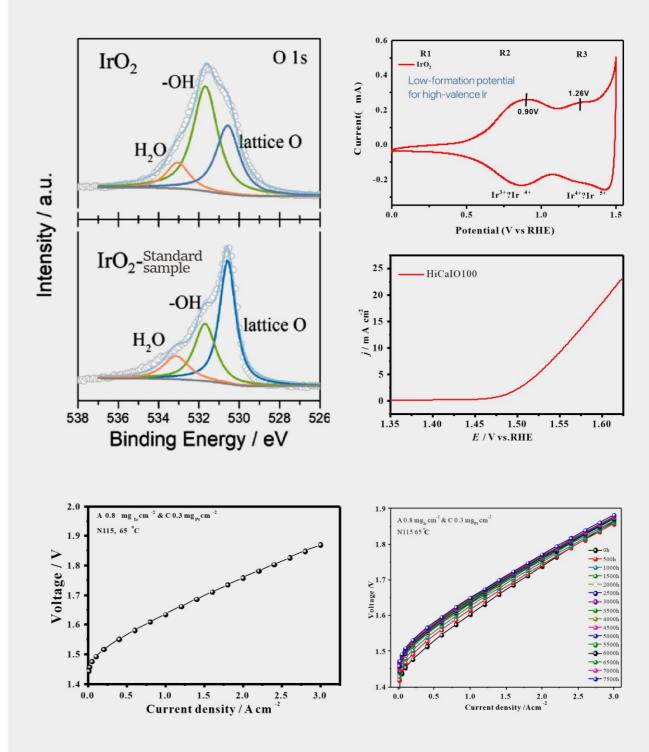
Technical Features and Advancement

Kilogram-scale preparation for each batch

Surface hydroxylation treatment, issuing high dispersibility. High specific surface area (> 100 m2/g).

Composite structure ensuring both high activity and stability


Application Scenarios

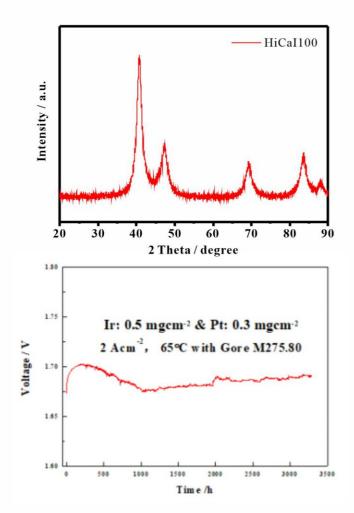

Anode Catalysts for PEM Water Electrolysis

Fuel Cell Reversal Tolerance

Unsupported Iridium Oxide

Low-Iridium Catalyst

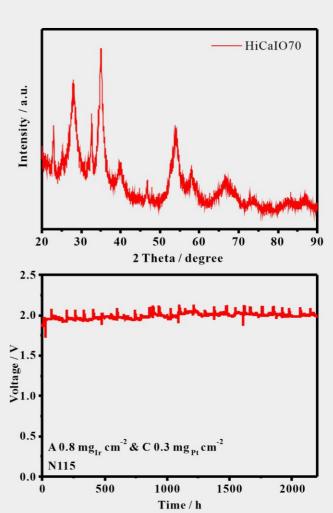
Technical Features and Advancement


500-gram-scale preparation for each batch Oxygen evolution overpotential < 310 mV @ 10 mA cm -2 in 0.1 M HClO4.

Excellent stability with no decay over 3000 h testing.

Application Scenarios
PEM Water Electrolysis
Fuel Cell Reversal Tolerance

Unsupported Iridium Black


Low-Iridium Catalyst

Technical Features and Advancement

500-gram-scale preparation for each batch Oxygen evolution overpotential < 320 mV @ 10 mA cm-2 in 0.1 M HCIO4

High stability with no decay over 3000 h testing

Application Scenarios
Hydrogen Production for Civil Use

Platinum-Alumina Catalyst

Technical Features and Advancement

Highly dispersed Pt/ Al₂O₃ catalyst

This catalyst is a noble metal-based catalyst supported on activated alumina, primarily employed for hydrogenation reactions of aromatic aldehydes, aniline derivatives, and nitro-aromatic-aliphatic compounds. It also serves for catalytic deoxygenation in hydrogen gas or hydrogen-containing gas mixtures and widely utilized for hydrogen removal from oxygen gas and oxygen-containing gas mixtures.

Platinum-Alumina Catalyst

Metal Content 0.5% Pt (Content is optional)	Color Dark grey
Carrier	Carrier Size
γ-Al ₂ O ₃	Ф3 ~ 5 mm (Optional)
Carrier Specific Surface Area	Carrier Pore Volume
≥300 m²/g	≥0.38 ml/g
Bulk Density	Compressive Strength
0.72 g/cm ²	≥90 N per pellet
Operating Temperature	Operating Pressure
Room temperature~300°C	Atmospheric pressure ~15 M
Residual Oxygen after Purification	Service Life
≤1 ppm (Maximum up to 0.1 ppm)	≥3 years

Palladium deoxidation catalyst

15/ YHKC

Palladium deoxidation catalyst

Technical Features and Advancement

Highly dispersed Pd deoxidation catalyst

The catalyst is noble metal-based catalyst supported on activated alumina, primarily employed for catalytic deoxygenation in hydrogen-containing gas mixtures, also widely utilized for hydrogenation-deoxygenation in nitrogen and other inert gases.

Principle:

The oxygen impurities in the gas react with hydrogen to form water when the feed gas passes through the catalyst, there by achieving deoxygenation.

Metal Content	Color
0.5% Pd(Content is optional)	grey
Carrier	Carrier Size
y-Al ₂ O ₃	Φ1.6 ~2.5 mm (Size is optional)
Carrier Specific Surface Area	Carrier Pore Volume
≥300 m²/g	≥0.38 ml/g
Bulk Density	Compressive Strength
0.72 g/cm ²	≥90 N per pellet
Operating Temperature	Operating Pressure
Room temperature~650°C	Atmospheric pressure ~30 Mp.
Residual Oxygen after Purification	Service Life
≤1 ppm (Maximum up to 0.1 ppm)	≥3 years

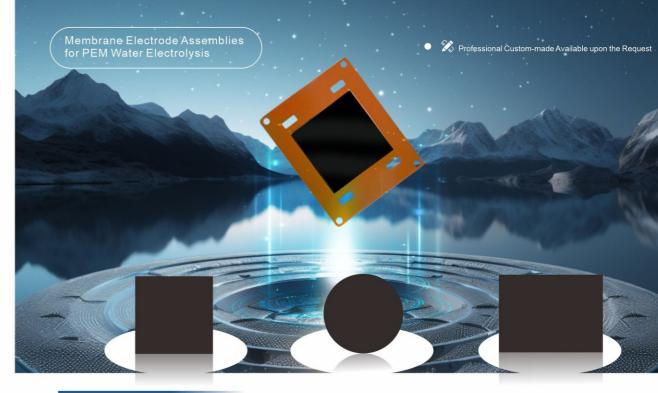
Other nano-precious metal catalysts

Iridium-Carbon

Ruthenium Oxide

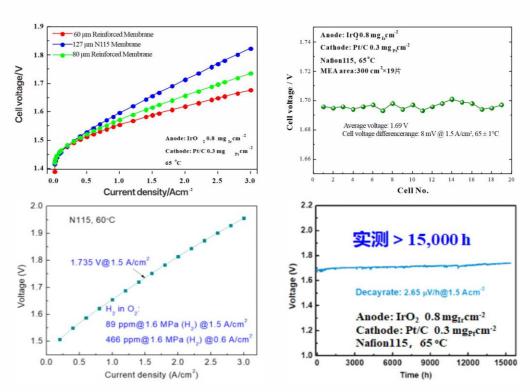
Ruthenium Black

Platinum-Nickel


Platinum-Cobalt

Palladium-Carbon

Iridium-Ruthenium Black



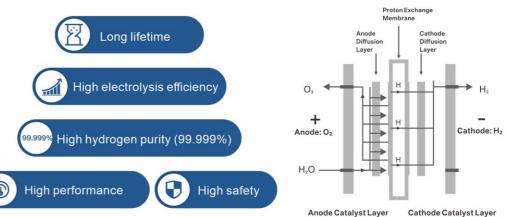
Product Features

Annual production exceeds 10,000 m2. The maximum effective area of the MEAs is over 3600 cm², and the maximum edge-sealing size is 100x100 cm².

The precious metal usage within the MEAs can be as low as 0.8 mg/cm².

The MEAs feature high activity, stability, consistency and low precious metal loading and have been utilized in MW-level stack

Standard test fixture



- Unique platinum-plated flow field and highpurity titanium diffusion layer;
- High-precision positioning and easy to maintain tight sealing;
- The test results are highly accurate and have good stability.

- Dedicated high-performance and longdurability membrane electrode;
- Easy to learn, practical, and with good comparability;
- Support customization of effective area and component characteristics.

Independently master the core technologies for PEM water electrolysis

PEM water-electrolysis technology can accommodate the intermittency of renewable energy sources such as photovoltaic and wind energy. It is a premier technology for coupling with renewable energy to produce green hydrogen and one of the crucial technologies for advancing clean energy landscape.

Compared with traditional alkaline water electrolysis and other technologies, PEM water-electrolysis features high efficiency, high-purity hydrogen, rapid start-up, and strong fluctuating adaptability (well-suited to couple renewable energy). Moreover, the compact structural design significantly saves the space and is highly adaptable for scenarios with limited space.

CASI New Energy Technology (Ningbo) Co., Ltd. meticulously selects the raw materials, fine-optimizes production processes, and rigorously controls every step of the workflow, striving for perfection at every juncture. Through continuous efforts, the company aims to become a global leading supplier of nanostructured electrocatalysts and PEM based MEAs, contributing to the development of the green hydrogen industry and facilitating the global energy structure's transition towards cleanliness and sustainability.

PEM Water Electrolyzer: 1 Nm³/H

Professional Custom-made Available upon the Request

PEM Water Electrolyzer: 0.6Nm³/H

Independent R & D and production: Superior materials, Exquisite processes

High purity hydrogen, Long service life

High pressure resistance: Capable of producing high-pressure hydrogen

High current density, Low power consumption, stable voltage

Safe and reliable , Stable performance

Independent R & D and production: Superior materials, Exquisite processes

High purity hydrogen, Long service life

High pressure resistance: Capable of producing high-pressure hydrogen

High current density, Low power consumption, stable voltage

Safe and reliable , Stable performance

ocesses	nign-pressure	stable voltage stable voltage	
Model		KA1	
Hydrogen Produc	tion Rate	1m³/H	
Oxygen Production	on Rate	0.5m³/H	
Constant Current	(A)	120	
Circulating Water	Temperature (°C)	25-70	
Circulating Water	Flow	160L/H	
Circulation Mode		水泵循环	
Hydrogen Purity (%)	99.99	
Water Electrolysis	Method	MEA	
Maximum Pressu	re Resistance	1.6Mpa	
Anode Wate	er	≤1	
TDS Cathode Wa	ater	1	
Single - cell Voltag	ge (v)	1.75-2.5	
Dimensions (excl	uding Lugs)	190*180*190	
Effective Area of N	ИEA	125.5*80.5(20)	
Application Fields	Fuel cell syst	em testing, Fuel cell backup	power supply,

Fuel cell system testing, Fuel cell backup power supply, Combined heat and power, Semiconductor, Multi-energy complementary independent micro - grids, etc.

Model	KA0.60
Hydrogen Production Rate	0.6m³/H
Oxygen Production Rate	0.3m³/H
Constant Current (A)	120
Circulating Water Temperature (°C)	25-70
Circulating Water Flow	100L/H
Circulation Mode	水泵循环
Hydrogen Purity (%)	99.99
Water Electrolysis Method	MEA
Maximum Pressure Resistance	1.6Mpa
Anode Water	≤1
TDS Cathode Water	I
Single - cell Voltage (v)	1.75-2.5
Dimensions (excluding Lugs)	190*180*145
Effective Area of MEA	125.5*80.5(12)

Application Fields

Fuel cell system testing, Fuel cell backup power supply,

Combined heat and power, Semiconductor, Multi-energy

complementary independent micro - grids, etc.

PEM Water Electrolyzer: 6000 Nml/Min

Professional Custom-made Available upon the Request

Independent R & D and production: Superior materials, Exquisite processes

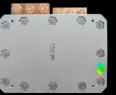
Long service life

High purity hydrogen,

Capable of producing high-pressure hydrogen

High current density, Low power consumption, stable voltage

Safe and reliable, Stable performance


Mod	del	KB6000	
Hyd	rogen Production Rate	6000Nml/Min	
Оху	gen Production Rate	3000Nml/Min	
Con	stant Current (A)	80	
Circ	ulating Water Temperature (°C)	25-45	
Circ	ulating Water Flow	3000ml/Min	
Circ	ulation Mode	Water Pump Circulation	
Hyd	rogen Purity (%)	99.99	
Wat	er Electrolysis Method	MEA	
Max	imum Pressure Resistance	1Mpa	
	Anode Water	≤1	
TDS	Cathode Water	1	
Sing	le - cell Voltage (v)	1.75-2.5	
Dim	ensions (excluding Lugs)	176*126*97	
Effe	ctive Area of MEA	106*78 (10)	

Application Fields

The fuel and carrier gas for gas chromatography (GC), reaction gas for electrolytic conductivity detector (ELCD) and atomic emission spectrometry detector (ED), hydrogen-rich water generator; hydrogen-oxygen generator, etc.

PEM Water Electrolyzer: 4800 Nml/Min

Professional Custom-made Available upon the Request

Independent R & D and production: Superior materials, Exquisite processes

High purity hydrogen, Long service life

High pressure resistance: Capable of producing high-pressure hydrogen

High current density, Low power consumption, stable voltage

Safe and reliable Stable performance

Model		KB4800
Hydrogen Production Rate		4800Nml/Min
Oxygen Production Ra	ate	2400Nml/Min
Constant Current (A)		80
Circulating Water Ten	nperature (°C)	25-45
Circulating Water Flow	V	2400ml/Min
Circulation Mode		Water Pump Circulation
Hydrogen Purity (%)		99.99
Water Electrolysis Method		MEA
Maximum Pressure Ro	esistance	1Mpa
Anode Water		≤1
TDS Cathode Water		1
Single - cell Voltage (v)		1.75-2.5
Dimensions (excludin	g Lugs)	176*126*84
Effective Area of MEA		106*78(8)

Application Fields

The fuel and carrier gas for gas chromatography (GC), reaction gas for electrolytic conductivity detector (ELCD) and atomic emission spectrometry detector (ED), hydrogen-rich water generator; hydrogen-oxygen generator, etc.

PEM Water Electrolyzer: 3600 Nml/Min

Professional Custom-made Available upon the Request

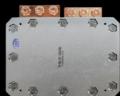
Independent R & D and production: Superior materials, Exquisite processes

High purity hydrogen, Long service life

High pressure resistance: Capable of producing high-pressure hydrogen

High current density, Low power consumption, stable voltage

Safe and reliable, Stable performance


Mod	del	KB3600	
Hyd	rogen Production Rate	3600Nml/Min	
Оху	gen Production Rate	1800Nml/Min	
Con	stant Current (A)	80	
Circ	ulating Water Temperature (°C)	25-45	
Circ	ulating Water Flow	2000ml/Min	
Circ	ulation Mode	Water Pump Circulation	
Hyd	rogen Purity (%)	99.99	
Wat	er Electrolysis Method	MEA	
Max	imum Pressure Resistance	1Mpa	
	Anode Water	≤1	
TDS	Cathode Water	I	
Sing	le - cell Voltage (v)	1.75-2.5	
Dim	ensions (excluding Lugs)	176*126*71	
Effe	ctive Area of MEA	106*78 (6)	

Application Fields

The fuel and carrier gas for gas chromatography (GC), reaction gas for electrolytic conductivity detector (ELCD) and atomic emission spectrometry detector (ED), hydrogen-rich water generator; hydrogen-oxygen generator, etc.

PEM Water Electrolyzer: 2400 Nml/Min

Professional Custom-made Available upon the Request

Independent R & D and production: Superior materials, Exquisite processes

High purity hydrogen, Long service life

High pressure resistance: Capable of producing high-pressure hydrogen

High current density, Low power consumption, stable voltage

Safe and reliable Stable performance

Mod	del	KB2400	
Hyd	rogen Production Rate	2400Nml/Min	
Oxy	gen Production Rate	1200Nml/Min	
Con	stant Current (A)	80	
Circ	ulating Water Temperature (°C)	25-45	
Circ	ulating Water Flow	600ml/Min	
Circ	ulation Mode	Water Pump Circulation	
Hyd	rogen Purity (%)	99.99	
Wat	er Electrolysis Method	MEA	
Max	rimum Pressure Resistance	1Mpa	
	Anode Water	≤1	
TDS	Cathode Water	1	
Sing	ıle - cell Voltage (v)	1.75-2.5	
Dim	ensions (excluding Lugs)	176*126*59	
Effe	ctive Area of MEA	106*78(4)	

Application Fields

The fuel and carrier gas for gas chromatography (GC), reaction gas for electrolytic conductivity detector (ELCD) and atomic emission spectrometry detector (ED), hydrogen-rich water generator; hydrogen-oxygen generator, etc.

PEM Water Electrolyzer: 2000 Nml/Min

Independent R & D and production: Superior materials, Exquisite processes

High purity hydrogen, Long service life

High pressure resistance: Capable of producing high-pressure hydrogen

High current density, Low power consumption, stable voltage

Safe and reliable , Stable performance

Model	KC2000
Hydrogen Production Rate	2000Nml/Min
Oxygen Production Rate	1000Nml/Min
Constant Current (A)	30
Circulating Water Temperature (°C)	25-45
Circulating Water Flow	220ml/Min
Circulation Mode	Water Pump Circulation
Hydrogen Purity (%)	99.99
Water Electrolysis Method	MEA
Maximum Pressure Resistance	0.8Mpa
Anode Water	≤1
TDS Cathode Water	I
Single - cell Voltage (v)	1.75-2.5
Dimensions (excluding Lugs)	93*93*79
Effective Area of MEA	56*56 (10)

Application Fields

The fuel and carrier gas for gas chromatography (GC), reaction gas for electrolytic conductivity detector (ELCD) and atomic emission spectrometry detector (ED), hydrogen-rich water generator; hydrogen-oxygen generator, etc.

Professional Custom-made Available upon the Request

Independent R & D and production: Superior materials, Exquisite processes

High purity hydrogen, Long service life

High pressure resistance: Capable of producing high-pressure hydrogen

High current density, Low power consumption, stable voltage

Safe and reliable , Stable performance

Model		KC1800
Hydrogen Production	Rate	1800Nml/Min
Oxygen Production Ra	te	900Nml/Min
Constant Current (A)		30
Circulating Water Tem	perature (°C)	25-45
Circulating Water Flow	V	200ml/Min
Circulation Mode		Water Pump Circulation
Hydrogen Purity (%)		99.99
Water Electrolysis Method		MEA
Maximum Pressure Re	sistance	0.8Mpa
Anode Water		≤1
TDS Cathode Water		1
Single - cell Voltage (v)		1.75-2.5
Dimensions (excluding	g Lugs)	93*93*73
Effective Area of MEA		56*56(9)

Application Fields

The fuel and carrier gas for gas chromatography (GC), reaction gas for electrolytic conductivity detector (ELCD) and atomic emission spectrometry detector (ED), hydrogen-rich water generator; hydrogen-oxygen generator, etc.

PEM Water Electrolyzer: 1600 Nml/Min

Professional Custom-made Available upon the Request

Independent R & D and production: Superior materials, Exquisite processes

High purity hydrogen, Long service life

High pressure resistance: Capable of producing high-pressure hydrogen

High current density, Low power consumption, stable voltage

Safe and reliable, Stable performance

Mod	del	KC1600	
Hyd	lrogen Production Rate	1600Nml/Min	
Oxy	gen Production Rate	800Nml/Min	
Con	nstant Current (A)	30	
Circ	culating Water Temperature (°C)	25-45	
Circ	culating Water Flow	180ml/Min	
Circ	culation Mode	Water Pump Circulation	
Hyd	rogen Purity (%)	99.99	
Wat	ter Electrolysis Method	MEA	
Max	kimum Pressure Resistance	0.8Mpa	
	Anode Water	≤1	
TDS	Cathode Water	1	
Sing	gle - cell Voltage (v)	1.75-2.5	
Dim	ensions (excluding Lugs)	93*93*67	
Effective Area of MEA		56*56 (8)	

Application Fields

The fuel and carrier gas for gas chromatography (GC), reaction gas for electrolytic conductivity detector (ELCD) and atomic emission spectrometry detector (ED), hydrogen-rich water generator; hydrogen-oxygen generator, etc.

PEM Water Electrolyzer: 1400 Nml/Min

Professional Custom-made Available upon the Request

Independent R & D and production: Superior materials, Exquisite processes

High purity hydrogen, Long service life

High pressure resistance: Capable of producing high-pressure hydrogen

High current density, Low power consumption, stable voltage

Safe and reliable Stable performance

Model	KC1400
Hydrogen Production Rate	1400Nml/Min
Oxygen Production Rate	700Nml/Min
Constant Current (A)	30
Circulating Water Temperature (°C)	25-45
Circulating Water Flow	160ml/Min
Circulation Mode	Water Pump Circulation
Hydrogen Purity (%)	99.99
Water Electrolysis Method	MEA
Maximum Pressure Resistance	0.8Mpa
Anode Water	≤1
TDS Cathode Water	I
Single - cell Voltage (v)	1.75-2.5
Dimensions (excluding Lugs)	93*93*61
Effective Area of MEA	56*56(7)

Application Fields

The fuel and carrier gas for gas chromatography (GC), reaction gas for electrolytic conductivity detector (ELCD) and atomic emission spectrometry detector (ED), hydrogen-rich water generator; hydrogen-oxygen generator, etc.

PEM Water Electrolyzer: 1200 Nml/Min

Professional Custom-made Available upon the Request

Independent R & D and production: Superior materials, Exquisite processes

High purity hydrogen, Long service life

High pressure resistance: Capable of producing high-pressure hydrogen

High current density, Low power consumption, stable voltage

Safe and reliable, Stable performance

Mod	del	KC1200	
Hydi	rogen Production Rate	1200Nml/Min	
Oxy	gen Production Rate	600Nml/Min	
Con	stant Current (A)	30	
Circ	ulating Water Temperature (°C)	25-45	
Circ	ulating Water Flow	140ml/Min	
Circ	ulation Mode	Water Pump Circulation	
Hydi	rogen Purity (%)	99.99	
Wat	er Electrolysis Method	MEA	
Max	imum Pressure Resistance	0.8Mpa	
	Anode Water	≤1	
TDS	Cathode Water	1	
Sing	le - cell Voltage (v)	1.75-2.5	
Dime	ensions (excluding Lugs)	93*93*55	
Effe	ctive Area of MEA	56*56 (6)	

Application Fields

The fuel and carrier gas for gas chromatography (GC), reaction gas for electrolytic conductivity detector (ELCD) and atomic emission spectrometry detector (ED), hydrogen-rich water generator; hydrogen-oxygen generator, etc.

PEM Water Electrolyzer: 1000 Nml/Min

Professional Custom-made Available upon the Request

Independent R & D and production: Superior materials, Exquisite processes

High purity hydrogen, Long service life

High pressure resistance: Capable of producing high-pressure hydrogen

High current density, Low power consumption, stable voltage

Safe and reliable Stable performance

Mod	lel	KC1000	
Hyd	rogen Production Rate	1000Nml/Min	
Оху	gen Production Rate	500Nml/Min	
Con	stant Current (A)	30	
Circ	ulating Water Temperature (°C)	25-45	
Circ	ulating Water Flow	140ml/Min	
Circ	ulation Mode	Water Pump Circulation	
Hyd	rogen Purity (%)	99.99	
Wat	er Electrolysis Method	MEA	
Max	imum Pressure Resistance	0.8Mpa	
	Anode Water	≤1	
TDS	Cathode Water	1	
Sing	le - cell Voltage (v)	1.75-2.5	
Dim	ensions (excluding Lugs)	93*93*49	
Effe	ctive Area of MEA	56*56(5)	

Application Fields

The fuel and carrier gas for gas chromatography (GC), reaction gas for electrolytic conductivity detector (ELCD) and atomic emission spectrometry detector (ED), hydrogen-rich water generator; hydrogen-oxygen generator, etc.

PEM Water Electrolyzer: 800 Nml/Min

Professional Custom-made Available upon the Request

Independent R & D and production: Superior materials, Exquisite processes

High purity hydrogen, Long service life

High pressure resistance: Capable of producing high-pressure hydrogen

High current density, Low power consumption. stable voltage

Safe and reliable, Stable performance

Model KC800 Hydrogen Production Rate 800Nml/Min Oxygen Production Rate 400Nml/Min Constant Current (A) 30 Circulating Water Temperature (°C) 25-45 Circulating Water Flow 120ml/Min Circulation Mode Water Pump Circulation Hydrogen Purity (%) 99.99 Water Electrolysis Method MEA Maximum Pressure Resistance 0.8Mpa Anode Water ≤1 **TDS** Cathode Water Single - cell Voltage (v) 1.75-2.5 Dimensions (excluding Lugs) 93*93*43 56*56 (4) Effective Area of MEA

Application Fields

The fuel and carrier gas for gas chromatography (GC), reaction gas for electrolytic conductivity detector (ELCD) and atomic emission spectrometry detector (ED), hydrogen-rich water generator; hydrogen-oxygen generator, etc.

PEM Water Electrolyzer: 600 Nml/Min

Professional Custom-made Available upon the Request

Independent R & D and production: Superior materials, Exquisite processes

High purity hydrogen, Long service life

High pressure resistance: Capable of producing high-pressure hydrogen

High current density, Low power consumption, stable voltage

Safe and reliable Stable performance

Mod	del	KC600	
Hyd	rogen Production Rate	600Nml/Min	
Оху	gen Production Rate	300Nml/Min	
Con	stant Current (A)	30	
Circ	ulating Water Temperature (°C)	25-45	
Circ	ulating Water Flow	100ml/Min	
Circ	ulation Mode	Water Pump Circulation	
Hyd	rogen Purity (%)	99.99	
Wat	er Electrolysis Method	MEA	
Max	rimum Pressure Resistance	0.8Mpa	
	Anode Water	≤1	
TDS	Cathode Water	1	
Sing	ıle - cell Voltage (v)	1.75-2.5	
Dim	ensions (excluding Lugs)	93*93*37	
Effe	ctive Area of MEA	56*56(3)	

Application Fields

The fuel and carrier gas for gas chromatography (GC), reaction gas for electrolytic conductivity detector (ELCD) and atomic emission spectrometry detector (ED), hydrogen-rich water generator; hydrogen-oxygen generator, etc.

PEM Water Electrolyzer: 400 Nml/Min

Professional Custom-made Available upon the Request

Independent R & D and production: Superior materials, Exquisite processes

High purity hydrogen,

Long service life

High pressure resistance: Capable of producing high-pressure hydrogen

High current density, Low power consumption, stable voltage



Safe and reliable, Stable performance

Mod	del	KC400	
Hyd	rogen Production Rate	400Nml/Min	
Оху	gen Production Rate	200Nml/Min	
Con	stant Current (A)	30	
Circ	ulating Water Temperature (°C)	25-45	
Circ	ulating Water Flow	80ml/Min	
Circulation Mode		Water Pump Circulation	
Hyd	rogen Purity (%)	99.99	
Wat	er Electrolysis Method	MEA	
Max	rimum Pressure Resistance	0.8Mpa	
	Anode Water	≤1	
TDS	Cathode Water	1	
Sing	le - cell Voltage (v)	1.75-2.5	
Dim	ensions (excluding Lugs)	93*93*31	
Effective Area of MEA		56*56 (2)	

Application Fields

The fuel and carrier gas for gas chromatography (GC), reaction gas for electrolytic conductivity detector (ELCD) and atomic emission spectrometry detector (ED), hydrogen-rich water generator; hydrogen-oxygen generator, etc.

Professional Custom-made Available upon the Request

Independent R & D and production: Superior materials, Exquisite processes

High purity hydrogen, Long service life

High pressure resistance: Capable of producing high-pressure hydrogen

High current density, Low power consumption, stable voltage

Safe and reliable Stable performance

Mod	del	CA300	
Hyd	rogen Production Rate	300Nml/Min	
Оху	gen Production Rate	150Nml/Min	
Con	stant Current (A)	20	
Circ	ulating Water Temperature (°C)	25-45	
Circ	ulating Water Flow	60ml/Min	
Circ	ulation Mode	Water Pump Circulation	
Hyd	rogen Purity (%)	99.99	
Wat	er Electrolysis Method	MEA	
Max	rimum Pressure Resistance	0.8Mpa	
	Anode Water	≤1	
TDS	Cathode Water	1	
Sing	le - cell Voltage (v)	1.75-2.5	
Dim	ensions (excluding Lugs)	74*74*39	
Effe	ctive Area of MEA	53.5*53.5(2)	

Application Fields

The fuel and carrier gas for gas chromatography (GC), reaction gas for electrolytic conductivity detector (ELCD) and atomic emission spectrometry detector (ED), hydrogen-rich water generator; hydrogen-oxygen generator, etc.

PEM Water Electrolyzer: 150 Nml/Min

Professional Custom-made Available upon the Request

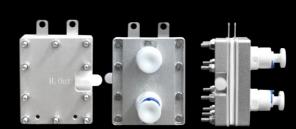
Independent R & D and production: Superior materials, Exquisite processes

Long service life

High purity hydrogen,

High pressure resistance: Capable of producing high-pressure hydrogen

High current density, Low power consumption, stable voltage


Safe and reliable, Stable performance

Model	CA150
Hydrogen Production Rate	150Nml/Min
Oxygen Production Rate	75Nml/Min
Constant Current (A)	20
Circulating Water Temperature (°C)	25-45
Circulating Water Flow	50ml/Min
Circulation Mode	Water Pump Circulation
Hydrogen Purity (%)	99.99
Water Electrolysis Method	MEA
Maximum Pressure Resistance	0.8Mpa
Anode Water	≤1
DS Cathode Water	1
Single - cell Voltage (v)	1.75-2.5
Dimensions (excluding Lugs)	74*74*23
Effective Area of MEA	53.5*53.5

Application Fields

The fuel and carrier gas for gas chromatography (GC), reaction gas for electrolytic conductivity detector (ELCD) and atomic emission spectrometry detector (ED), hydrogen-rich water generator; hydrogen-oxygen generator, etc.

PEM Water Electrolyzer: 50 Nml/Min

Professional Custom-made Available upon the Request

Independent R & D and production: Superior materials, Exquisite processes

High purity hydrogen, Long service life

High pressure resistance: Capable of producing high-pressure hydrogen

High current density, Low power consumption, stable voltage

Safe and reliable Stable performance

Mod	del	CA050	
Hyd	rogen Production Rate	50Nml/Min	
Оху	gen Production Rate	25Nml/Min	
Con	astant Current (A)	12	
Circ	culating Water Temperature (°C)	25-45	
Circ	culating Water Flow	30ml/Min	
Circ	culation Mode	Water Pump Circulation	
Hyd	rogen Purity (%)	99.99	
Wat	ter Electrolysis Method	MEA	
Max	kimum Pressure Resistance	0.8Mpa	
	Anode Water	≤1	
TDS	Cathode Water	I	
Sing	gle - cell Voltage (v)	1.75-2.5	
Dim	ensions (excluding Lugs)	58*48*23	
Effective Area of MEA		43*33	

Application Fields

The fuel and carrier gas for gas chromatography (GC), reaction gas for electrolytic conductivity detector (ELCD) and atomic emission spectrometry detector (ED), hydrogen-rich water generator; hydrogen-oxygen generator, etc.

Nano hydrogen-rich water generators

2500ppb in 5 min

5000ppb

in 10 min

PRODUCT PARAMETER

Product Brand	Product Name
YHKC	Nano Hydrogen Water Generator
Product Model	Battery Capacity
NNHW210-xx /NNHW210-LH-xx/ NNHW210-GS-xx/NNHW210-JC-xx	1800mAh/3.7V
Single Electrolysis Time	Number of Electrolysis Cycles on a Full Charg
5 minutes	25 - 30 times
Single Hydrogen Production Amount	Hydrogen Production Amount for 2 - 3 Times
	Above 5000ppb
2500ppb	Above 5000ppb
2500ppb Hydrogen Production Technology	Above 5000ppb Proton Exchange Membrane
2500ppb Hydrogen Production Technology PEM Hydrogen-Oxygen	Above 5000ppb
2500ppb Hydrogen Production Technology PEM Hydrogen-Oxygen	Above 5000ppb Proton Exchange Membrane
2500ppb Hydrogen Production Technology PEM Hydrogen-Oxygen Separation MEA	Above 5000ppb Proton Exchange Membrane
2500ppb	Above 5000ppb Proton Exchange Membrane DuPont N117, USA
2500ppb Hydrogen Production Technology PEM Hydrogen-Oxygen Separation MEA Product Dimensions	Proton Exchange Membrane DuPont N117, USA Capacity
Hydrogen Production Technology PEM Hydrogen-Oxygen Separation MEA Product Dimensions \$\phi61*200\text{mm}\$	Proton Exchange Membrane DuPont N117, USA Capacity 210mL
2500ppb Hydrogen Production Technology PEM Hydrogen-Oxygen Separation MEA Product Dimensions	Proton Exchange Membrane DuPont N117, USA Capacity

PORTABLE HYDROGEN INHALER

Convenient to carry and travel, use anytime, anywhere

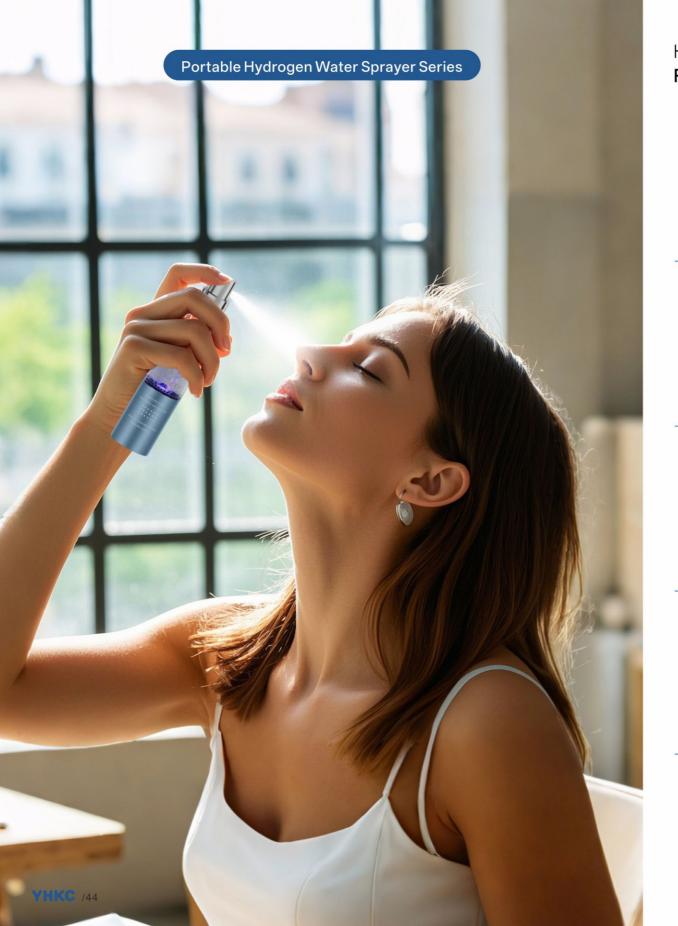
Portable Hydrogen Inhaler Series

STRONGER HEAT DISSIPATION

Stronger heat dissipation with abundant holes

INDEPENDENT GAS OUTLETS

Independent hydrogen and oxygen outlets



PORTABLE

Compact and portable design

PRODUCT PARAMETER

Product Brand	Product Name
YHKC	450mL Portable Hydrogen - Oxygen (
Product Model	Product Dimensions
HOR450-GD/HOR450-SV	11*11*19.3cm
Gross Weight	Hydrogen - Oxygen Mixed Inhalation
2.4kg	450mL/min
Hydrogen Flow Rate	Oxygen Flow Rate
300mL/min	150mL/min
Power Adapter	Power
AC110~240V/50~60HZ	90W
Adjustable Time	Hydrogen Purity
1H/2H/3H	99.99%
Hydrogen Production Principle	Suitable Water Temperature
Portable Hydrogen Water Sprayer Series	Room temperature
Suitable Water Quality	Warranty
Purified water	2years
Membrane Electrode	Color
DuPont N117 Membrane + Nano Platinum Coating, USA	Rose Gold / Space Silver

Hydrogen Water Sprayer Five Key Skin - caring Features

ng penetration
The diameter of hydrogen-rich small-molecule water is 5 μm, less than that of human cells with 25 µm, therefore the hydrogen-rich small-molecule water can easily penetrate through the cell layer, effectively moisturizing.

Pure natural

Zero additives. Applicable even for children's delicate skin. Relieve your overused eyes as well.

Antioxidant
Hydrogen concentration up to 1000 ppb, highly effective antioxidation.

Mini version

Lipstick size, convenient in your bag or pocket.

Recycling utilization

One-time purchase for long-term use: 2-year quality guarantee.

PRODUCT PARAMETER

Product Brand	Product Name
YHKC	Portable Hydrogen Water Nebulize
Product Dimensions	Hydrogen Concentration
ф30*136mm	≥1000ppb
Battery Specification	Battery Type
3.7V/430mAh	Polymer Lithium - ion Battery
Power Adapter	Charging Method
≤5V Mobile Phone Charger	USB & Type - C Port Charging
Charging Time	Single Hydrogen Production Time
Approximately 1.5h	1 min
Number of Hydrogen Production Cycles on a Full Charge	Water Tank Capacity
Approximately 50 times	20ml
Suitable Water Quality	Material
Mineral water / Tap water / Purified water	German produced PC + ABS

Testing Reagent for Dissolved Hydrogen Concentration

PRODUCT PARAMETER

Product Brand	Product Name
YHKC	Dissolved Hydrogen Concentration Testing Reager
Model	Hydrogen Concentration
HWPDJ - 21	1 drop ≈ 100ppb, approximately 400 drops/bottle

YHKC

Ningbo Zhongke Cotrun New Energy Science Technology Co., Ltd.

New-energy enterprise focused on the development of high-performance precious metal based nanocatalysts with independent intellectual property rights.

NOBLE METAL-BASED NANOCATALYSTS

